Take the laptop, for example. Its components, particularly its billions of semiconductor electronic circuits, are growing ever tinier while the instrument's power and capacity increase. But heat generated by electric current can cause the circuits to melt and the laptop hardware to fail.
Indeed, says Rotkin, an assistant professor of physics, a laptop in use can generate heat faster than an everyday hotplate and almost as fast as a small nuclear reactor.
Developing better methods to dissipate this heat has been listed as a "grand challenge" for modern electronics by the International Technology Roadmap for Semiconductors (ITRS) , a consortium of semiconductor manufacturers.
Rotkin and colleagues at IBM's T.J. Watson Research Center and at the Ioffe Institute in St. Petersburg, Russia, have developed a heat-dissipation method that cools carbon nanotube electronics by utilizing nonconventional radiation in a "near-field zone" just above the substrate, or surface, on which the nanotubes rest.
The new cooling method requires that the nanotubes' substrate be composed of a polar material such as silicon-dioxide (SiO2), says Rotkin. The method channels excess heat from the nanotubes into the substrate which, being much larger, can be more effectively cooled by the vents that push cool air through laptops.........
No comments:
Post a Comment