A team of experimentalists and theorists at the University of Pennsylvania, Drexel University and Harvard University has proposed a new and surprisingly effective means of stabilizing and controlling ferroelectricity in nanostructures: terminating their surfaces with fragments of water. Ferroelectrics are technologically important "smart" materials for a number of applications because they have local dipoles, which can switch up and down to encode and store information. The team's work is published in the recent issue of Nano Letters.
"It is astonishing to see that a single wire of even a few atoms across can act as a stable and switchable dipole memory element," Jonathan Spanier, assistant professor of materials science and engineering at Drexel, said.
Spanier and colleagues successfully demonstrated the benefits of using water to stabilize memory bits in segments of oxide nanowires that are only about 3 billionths of a meter wide.
"We have been interested in how water sticks to oxides," Alexie Kolpak, Penn graduate student in theoretical physical chemistry, said. "We are especially excited that water is the key ingredient in making these wires 'remember' their state".........
No comments:
Post a Comment